3.874 \(\int \frac{1}{x^2 \sqrt [4]{2-3 x^2}} \, dx\)

Optimal. Leaf size=47 \[ -\frac{\left (2-3 x^2\right )^{3/4}}{2 x}-\frac{\sqrt{3} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{2^{3/4}} \]

[Out]

-(2 - 3*x^2)^(3/4)/(2*x) - (Sqrt[3]*EllipticE[ArcSin[Sqrt[3/2]*x]/2, 2])/2^(3/4)

________________________________________________________________________________________

Rubi [A]  time = 0.0082851, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {325, 228} \[ -\frac{\left (2-3 x^2\right )^{3/4}}{2 x}-\frac{\sqrt{3} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{2^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(2 - 3*x^2)^(1/4)),x]

[Out]

-(2 - 3*x^2)^(3/4)/(2*x) - (Sqrt[3]*EllipticE[ArcSin[Sqrt[3/2]*x]/2, 2])/2^(3/4)

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 228

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(1/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \sqrt [4]{2-3 x^2}} \, dx &=-\frac{\left (2-3 x^2\right )^{3/4}}{2 x}-\frac{3}{4} \int \frac{1}{\sqrt [4]{2-3 x^2}} \, dx\\ &=-\frac{\left (2-3 x^2\right )^{3/4}}{2 x}-\frac{\sqrt{3} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{2^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0043975, size = 27, normalized size = 0.57 \[ -\frac{\, _2F_1\left (-\frac{1}{2},\frac{1}{4};\frac{1}{2};\frac{3 x^2}{2}\right )}{\sqrt [4]{2} x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(2 - 3*x^2)^(1/4)),x]

[Out]

-(Hypergeometric2F1[-1/2, 1/4, 1/2, (3*x^2)/2]/(2^(1/4)*x))

________________________________________________________________________________________

Maple [C]  time = 0.027, size = 40, normalized size = 0.9 \begin{align*}{\frac{3\,{x}^{2}-2}{2\,x}{\frac{1}{\sqrt [4]{-3\,{x}^{2}+2}}}}-{\frac{3\,{2}^{3/4}x}{8}{\mbox{$_2$F$_1$}({\frac{1}{4}},{\frac{1}{2}};\,{\frac{3}{2}};\,{\frac{3\,{x}^{2}}{2}})}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-3*x^2+2)^(1/4),x)

[Out]

1/2*(3*x^2-2)/x/(-3*x^2+2)^(1/4)-3/8*2^(3/4)*x*hypergeom([1/4,1/2],[3/2],3/2*x^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/((-3*x^2 + 2)^(1/4)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (-3 \, x^{2} + 2\right )}^{\frac{3}{4}}}{3 \, x^{4} - 2 \, x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4),x, algorithm="fricas")

[Out]

integral(-(-3*x^2 + 2)^(3/4)/(3*x^4 - 2*x^2), x)

________________________________________________________________________________________

Sympy [C]  time = 0.677284, size = 31, normalized size = 0.66 \begin{align*} - \frac{2^{\frac{3}{4}}{{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{1}{2} \end{matrix}\middle |{\frac{3 x^{2} e^{2 i \pi }}{2}} \right )}}{2 x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-3*x**2+2)**(1/4),x)

[Out]

-2**(3/4)*hyper((-1/2, 1/4), (1/2,), 3*x**2*exp_polar(2*I*pi)/2)/(2*x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4),x, algorithm="giac")

[Out]

integrate(1/((-3*x^2 + 2)^(1/4)*x^2), x)